Rust-for-Arduboy/docs/sprite-converter.html

1992 lines
78 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link
rel="icon"
href="https://upload.wikimedia.org/wikipedia/commons/0/0f/Original_Ferris.svg"
type="image/svg+xml"
/>
<title>ZennDev1337 Sprite Converter</title>
</head>
<body onload="setup(this);">
<style>
html,
body {
margin: 0;
background-color: black;
color: azure;
overflow: hidden;
}
body {
font-family: Courier New;
text-align: center;
align-items: center;
font-size: xx-large;
font-weight: 700;
}
.wrapper {
min-height: calc(100vh - 50px);
}
.footer {
font-family: Courier New;
text-align: center;
font-size: large;
font-weight: 600;
height: 50px;
color: #e7e7e7;
}
.footer > a {
font-family: Courier New;
text-align: center;
font-size: large;
font-weight: 700;
margin: 0;
color: #e7e7e7;
text-decoration: none;
}
.sticky {
bottom: 0;
height: 50px;
}
textarea {
background-color: #281c1c;
color: azure;
border: dotted 2px #ce422b;
width: 670px;
height: 300px;
resize: none;
}
.title > p {
padding-left: 20px;
margin: 0;
padding-right: 20px;
color: #e7e7e7;
font-size: xx-large;
}
.title {
padding-top: 50px;
}
.separator {
border-top: solid #281c1c;
border-bottom: none;
border-left: none;
border-right: none;
margin-top: 40px;
width: clamp(700px, 70vw, 1200px);
}
.image-container {
margin-top: 40px;
min-height: 80px;
}
p {
font-size: medium;
}
.txtHead {
margin-bottom: 5px;
}
.topnav {
background-color: #000000;
height: 47px;
}
.topnav a {
color: #f2f2f2;
text-align: center;
padding: 14px 16px;
text-decoration: none;
font-size: 17px;
}
.topnav a:hover {
background-color: #ddd;
color: black;
}
.topnav a.active {
background-color: #281c1c;
color: white;
}
.topnav .icon {
display: none;
}
@media screen and (max-width: 800px) {
.topnav a:not(:first-child) {
display: none;
}
.topnav a.icon {
float: right;
display: block;
}
}
@media screen and (max-width: 800px) {
.topnav.responsive {
position: relative;
height: auto;
}
.topnav {
text-align: left;
}
.topnav.responsive a.icon {
position: absolute;
right: 0;
top: 0;
}
.topnav.responsive a {
float: none;
display: block;
text-align: left;
}
}
</style>
<div class="wrapper">
<div class="topnav" id="myTopnav">
<a
href="https://zenndev1337.github.io/Rust-for-Arduboy/index.html"
><nobr>Rust for Arduboy</nobr></a
>
<a
href="https://zenndev1337.github.io/Rust-for-Arduboy/image-converter.html"
><nobr>Image Converter</nobr></a
>
<a
href="https://zenndev1337.github.io/Rust-for-Arduboy/tile-converter.html"
><nobr>Tile Converter</nobr></a
>
<a
href="https://zenndev1337.github.io/Rust-for-Arduboy/sprite-converter.html"
class="active"
><nobr>Sprite Converter</nobr></a
>
<a
href="https://zenndev1337.github.io/Rust-for-Arduboy/arduboy-file-converter.html"
><nobr>.arduboy Generator</nobr></a
>
<a
href="https://zenndev1337.github.io/Rust-for-Arduboy/fxdata-converter.html"
><nobr>fxdata.h Converter</nobr></a
>
<a
href="javascript:void(0);"
class="icon"
onclick="myFunction()"
>
<svg
xmlns="http://www.w3.org/2000/svg"
width="16"
height="16"
fill="currentColor"
class="bi bi-list"
viewBox="0 0 16 16"
>
<path
fill-rule="evenodd"
d="M2.5 12a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5zm0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5zm0-4a.5.5 0 0 1 .5-.5h10a.5.5 0 0 1 0 1H3a.5.5 0 0 1-.5-.5z"
/>
</svg>
</a>
</div>
<div class="title">
<p>Drop your sprite here</p>
</div>
<hr class="separator" />
<div class="image-container">
<div id="image-container"></div>
</div>
<hr class="separator" />
</div>
<footer class="footer sticky">
<a href="https://github.com/ZennDev1337/" target="_blank"
>By ZennDev1337</a
>
</footer>
<script language="JavaScript">
function myFunction() {
var x = document.getElementById("myTopnav");
if (x.className === "topnav") {
x.className += " responsive";
} else {
x.className = "topnav";
}
}
</script>
<script language="JavaScript">
/*
* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
*
* Copyright (c) 1994 Anthony Dekker
*
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
* "Kohonen neural networks for optimal colour quantization" in "Network:
* Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
* the algorithm.
*
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal in
* this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit persons who
* receive copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*/
/*
* This class handles Neural-Net quantization algorithm
* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
* @author Thibault Imbert (AS3 version - bytearray.org)
* @author Kevin Kwok (JavaScript version - https://github.com/antimatter15/jsgif)
* @version 0.1 AS3 implementation
*/
NeuQuant = function () {
var exports = {};
var netsize = 256; /* number of colours used */
/* four primes near 500 - assume no image has a length so large */
/* that it is divisible by all four primes */
var prime1 = 499;
var prime2 = 491;
var prime3 = 487;
var prime4 = 503;
var minpicturebytes =
3 * prime4; /* minimum size for input image */
/*
* Program Skeleton ---------------- [select samplefac in range 1..30] [read
* image from input file] pic = (unsigned char*) malloc(3*width*height);
* initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
* image header, using writecolourmap(f)] inxbuild(); write output image using
* inxsearch(b,g,r)
*/
/*
* Network Definitions -------------------
*/
var maxnetpos = netsize - 1;
var netbiasshift = 4; /* bias for colour values */
var ncycles = 100; /* no. of learning cycles */
/* defs for freq and bias */
var intbiasshift = 16; /* bias for fractions */
var intbias = 1 << intbiasshift;
var gammashift = 10; /* gamma = 1024 */
var gamma = 1 << gammashift;
var betashift = 10;
var beta = intbias >> betashift; /* beta = 1/1024 */
var betagamma = intbias << (gammashift - betashift);
/* defs for decreasing radius factor */
var initrad = netsize >> 3; /* for 256 cols, radius starts */
var radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
var radiusbias = 1 << radiusbiasshift;
var initradius = initrad * radiusbias; /* and decreases by a */
var radiusdec = 30; /* factor of 1/30 each cycle */
/* defs for decreasing alpha factor */
var alphabiasshift = 10; /* alpha starts at 1.0 */
var initalpha = 1 << alphabiasshift;
var alphadec; /* biased by 10 bits */
/* radbias and alpharadbias used for radpower calculation */
var radbiasshift = 8;
var radbias = 1 << radbiasshift;
var alpharadbshift = alphabiasshift + radbiasshift;
var alpharadbias = 1 << alpharadbshift;
/*
* Types and Global Variables --------------------------
*/
var thepicture; /* the input image itself */
var lengthcount; /* lengthcount = H*W*3 */
var samplefac; /* sampling factor 1..30 */
// typedef int pixel[4]; /* BGRc */
var network; /* the network itself - [netsize][4] */
var netindex = [];
/* for network lookup - really 256 */
var bias = [];
/* bias and freq arrays for learning */
var freq = [];
var radpower = [];
var NeuQuant = (exports.NeuQuant = function NeuQuant(
thepic,
len,
sample
) {
var i;
var p;
thepicture = thepic;
lengthcount = len;
samplefac = sample;
network = new Array(netsize);
for (i = 0; i < netsize; i++) {
network[i] = new Array(4);
p = network[i];
p[0] =
p[1] =
p[2] =
(i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; /* 1/netsize */
bias[i] = 0;
}
});
var colorMap = function colorMap() {
var map = [];
var index = new Array(netsize);
for (var i = 0; i < netsize; i++) index[network[i][3]] = i;
var k = 0;
for (var l = 0; l < netsize; l++) {
var j = index[l];
map[k++] = network[j][0];
map[k++] = network[j][1];
map[k++] = network[j][2];
}
return map;
};
/*
* Insertion sort of network and building of netindex[0..255] (to do after
* unbias)
* -------------------------------------------------------------------------------
*/
var inxbuild = function inxbuild() {
var i;
var j;
var smallpos;
var smallval;
var p;
var q;
var previouscol;
var startpos;
previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[1]; /* index on g */
/* find smallest in i..netsize-1 */
for (j = i + 1; j < netsize; j++) {
q = network[j];
if (q[1] < smallval) {
/* index on g */
smallpos = j;
smallval = q[1]; /* index on g */
}
}
q = network[smallpos];
/* swap p (i) and q (smallpos) entries */
if (i != smallpos) {
j = q[0];
q[0] = p[0];
p[0] = j;
j = q[1];
q[1] = p[1];
p[1] = j;
j = q[2];
q[2] = p[2];
p[2] = j;
j = q[3];
q[3] = p[3];
p[3] = j;
}
/* smallval entry is now in position i */
if (smallval != previouscol) {
netindex[previouscol] = (startpos + i) >> 1;
for (j = previouscol + 1; j < smallval; j++)
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos) >> 1;
for (j = previouscol + 1; j < 256; j++)
netindex[j] = maxnetpos; /* really 256 */
};
/*
* Main Learning Loop ------------------
*/
var learn = function learn() {
var i;
var j;
var b;
var g;
var r;
var radius;
var rad;
var alpha;
var step;
var delta;
var samplepixels;
var p;
var pix;
var lim;
if (lengthcount < minpicturebytes) samplefac = 1;
alphadec = 30 + (samplefac - 1) / 3;
p = thepicture;
pix = 0;
lim = lengthcount;
samplepixels = lengthcount / (3 * samplefac);
delta = (samplepixels / ncycles) | 0;
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (i = 0; i < rad; i++)
radpower[i] =
alpha *
(((rad * rad - i * i) * radbias) / (rad * rad));
if (lengthcount < minpicturebytes) step = 3;
else if (lengthcount % prime1 !== 0) step = 3 * prime1;
else {
if (lengthcount % prime2 !== 0) step = 3 * prime2;
else {
if (lengthcount % prime3 !== 0) step = 3 * prime3;
else step = 3 * prime4;
}
}
i = 0;
while (i < samplepixels) {
b = (p[pix + 0] & 0xff) << netbiasshift;
g = (p[pix + 1] & 0xff) << netbiasshift;
r = (p[pix + 2] & 0xff) << netbiasshift;
j = contest(b, g, r);
altersingle(alpha, j, b, g, r);
if (rad !== 0)
alterneigh(rad, j, b, g, r); /* alter neighbours */
pix += step;
if (pix >= lim) pix -= lengthcount;
i++;
if (delta === 0) delta = 1;
if (i % delta === 0) {
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (j = 0; j < rad; j++)
radpower[j] =
alpha *
(((rad * rad - j * j) * radbias) /
(rad * rad));
}
}
};
/*
** Search for BGR values 0..255 (after net is unbiased) and return colour
* index
* ----------------------------------------------------------------------------
*/
var map = (exports.map = function map(b, g, r) {
var i;
var j;
var dist;
var a;
var bestd;
var p;
var best;
bestd = 1000; /* biggest possible dist is 256*3 */
best = -1;
i = netindex[g]; /* index on g */
j = i - 1; /* start at netindex[g] and work outwards */
while (i < netsize || j >= 0) {
if (i < netsize) {
p = network[i];
dist = p[1] - g; /* inx key */
if (dist >= bestd) i = netsize; /* stop iter */
else {
i++;
if (dist < 0) dist = -dist;
a = p[0] - b;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[1]; /* inx key - reverse dif */
if (dist >= bestd) j = -1; /* stop iter */
else {
j--;
if (dist < 0) dist = -dist;
a = p[0] - b;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
a = p[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return best;
});
var process = (exports.process = function process() {
learn();
unbiasnet();
inxbuild();
return colorMap();
});
/*
* Unbias network to give byte values 0..255 and record position i to prepare
* for sort
* -----------------------------------------------------------------------------------
*/
var unbiasnet = function unbiasnet() {
var i;
var j;
for (i = 0; i < netsize; i++) {
network[i][0] >>= netbiasshift;
network[i][1] >>= netbiasshift;
network[i][2] >>= netbiasshift;
network[i][3] = i; /* record colour no */
}
};
/*
* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
* radpower[|i-j|]
* ---------------------------------------------------------------------------------
*/
var alterneigh = function alterneigh(rad, i, b, g, r) {
var j;
var k;
var lo;
var hi;
var a;
var m;
var p;
lo = i - rad;
if (lo < -1) lo = -1;
hi = i + rad;
if (hi > netsize) hi = netsize;
j = i + 1;
k = i - 1;
m = 1;
while (j < hi || k > lo) {
a = radpower[m++];
if (j < hi) {
p = network[j++];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (e) {} // prevents 1.3 miscompilation
}
if (k > lo) {
p = network[k--];
try {
p[0] -= (a * (p[0] - b)) / alpharadbias;
p[1] -= (a * (p[1] - g)) / alpharadbias;
p[2] -= (a * (p[2] - r)) / alpharadbias;
} catch (e) {}
}
}
};
/*
* Move neuron i towards biased (b,g,r) by factor alpha
* ----------------------------------------------------
*/
var altersingle = function altersingle(alpha, i, b, g, r) {
/* alter hit neuron */
var n = network[i];
n[0] -= (alpha * (n[0] - b)) / initalpha;
n[1] -= (alpha * (n[1] - g)) / initalpha;
n[2] -= (alpha * (n[2] - r)) / initalpha;
};
/*
* Search for biased BGR values ----------------------------
*/
var contest = function contest(b, g, r) {
/* finds closest neuron (min dist) and updates freq */
/* finds best neuron (min dist-bias) and returns position */
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
/* bias[i] = gamma*((1/netsize)-freq[i]) */
var i;
var dist;
var a;
var biasdist;
var betafreq;
var bestpos;
var bestbiaspos;
var bestd;
var bestbiasd;
var n;
bestd = ~(1 << 31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
for (i = 0; i < netsize; i++) {
n = network[i];
dist = n[0] - b;
if (dist < 0) dist = -dist;
a = n[1] - g;
if (a < 0) a = -a;
dist += a;
a = n[2] - r;
if (a < 0) a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist =
dist - (bias[i] >> (intbiasshift - netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = freq[i] >> betashift;
freq[i] -= betafreq;
bias[i] += betafreq << gammashift;
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return bestbiaspos;
};
NeuQuant.apply(this, arguments);
return exports;
};
</script>
<script language="JavaScript">
/**
* This class handles LZW encoding
* Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
* @author Thibault Imbert (AS3 version - bytearray.org)
* @author Kevin Kwok (JavaScript version - https://github.com/antimatter15/jsgif)
* @version 0.1 AS3 implementation
*/
LZWEncoder = function () {
var exports = {};
var EOF = -1;
var imgW;
var imgH;
var pixAry;
var initCodeSize;
var remaining;
var curPixel;
// GIFCOMPR.C - GIF Image compression routines
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley (mgardi@watdcsu.waterloo.edu)
// General DEFINEs
var BITS = 12;
var HSIZE = 5003; // 80% occupancy
// GIF Image compression - modified 'compress'
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe)
var n_bits; // number of bits/code
var maxbits = BITS; // user settable max # bits/code
var maxcode; // maximum code, given n_bits
var maxmaxcode = 1 << BITS; // should NEVER generate this code
var htab = [];
var codetab = [];
var hsize = HSIZE; // for dynamic table sizing
var free_ent = 0; // first unused entry
// block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
var clear_flg = false;
// Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw.
var g_init_bits;
var ClearCode;
var EOFCode;
// output
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over.
var cur_accum = 0;
var cur_bits = 0;
var masks = [
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f,
0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff,
0x3fff, 0x7fff, 0xffff,
];
// Number of characters so far in this 'packet'
var a_count;
// Define the storage for the packet accumulator
var accum = [];
var LZWEncoder = (exports.LZWEncoder = function LZWEncoder(
width,
height,
pixels,
color_depth
) {
imgW = width;
imgH = height;
pixAry = pixels;
initCodeSize = Math.max(2, color_depth);
});
// Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
var char_out = function char_out(c, outs) {
accum[a_count++] = c;
if (a_count >= 254) flush_char(outs);
};
// Clear out the hash table
// table clear for block compress
var cl_block = function cl_block(outs) {
cl_hash(hsize);
free_ent = ClearCode + 2;
clear_flg = true;
output(ClearCode, outs);
};
// reset code table
var cl_hash = function cl_hash(hsize) {
for (var i = 0; i < hsize; ++i) htab[i] = -1;
};
var compress = (exports.compress = function compress(
init_bits,
outs
) {
var fcode;
var i; /* = 0 */
var c;
var ent;
var disp;
var hsize_reg;
var hshift;
// Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits;
// Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MAXCODE(n_bits);
ClearCode = 1 << (init_bits - 1);
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2;
a_count = 0; // clear packet
ent = nextPixel();
hshift = 0;
for (fcode = hsize; fcode < 65536; fcode *= 2) ++hshift;
hshift = 8 - hshift; // set hash code range bound
hsize_reg = hsize;
cl_hash(hsize_reg); // clear hash table
output(ClearCode, outs);
outer_loop: while ((c = nextPixel()) != EOF) {
fcode = (c << maxbits) + ent;
i = (c << hshift) ^ ent; // xor hashing
if (htab[i] == fcode) {
ent = codetab[i];
continue;
} else if (htab[i] >= 0) {
// non-empty slot
disp = hsize_reg - i; // secondary hash (after G. Knott)
if (i === 0) disp = 1;
do {
if ((i -= disp) < 0) i += hsize_reg;
if (htab[i] == fcode) {
ent = codetab[i];
continue outer_loop;
}
} while (htab[i] >= 0);
}
output(ent, outs);
ent = c;
if (free_ent < maxmaxcode) {
codetab[i] = free_ent++; // code -> hashtable
htab[i] = fcode;
} else cl_block(outs);
}
// Put out the final code.
output(ent, outs);
output(EOFCode, outs);
});
// ----------------------------------------------------------------------------
var encode = (exports.encode = function encode(os) {
os.writeByte(initCodeSize); // write "initial code size" byte
remaining = imgW * imgH; // reset navigation variables
curPixel = 0;
compress(initCodeSize + 1, os); // compress and write the pixel data
os.writeByte(0); // write block terminator
});
// Flush the packet to disk, and reset the accumulator
var flush_char = function flush_char(outs) {
if (a_count > 0) {
outs.writeByte(a_count);
outs.writeBytes(accum, 0, a_count);
a_count = 0;
}
};
var MAXCODE = function MAXCODE(n_bits) {
return (1 << n_bits) - 1;
};
// ----------------------------------------------------------------------------
// Return the next pixel from the image
// ----------------------------------------------------------------------------
var nextPixel = function nextPixel() {
if (remaining === 0) return EOF;
--remaining;
var pix = pixAry[curPixel++];
return pix & 0xff;
};
var output = function output(code, outs) {
cur_accum &= masks[cur_bits];
if (cur_bits > 0) cur_accum |= code << cur_bits;
else cur_accum = code;
cur_bits += n_bits;
while (cur_bits >= 8) {
char_out(cur_accum & 0xff, outs);
cur_accum >>= 8;
cur_bits -= 8;
}
// If the next entry is going to be too big for the code size,
// then increase it, if possible.
if (free_ent > maxcode || clear_flg) {
if (clear_flg) {
maxcode = MAXCODE((n_bits = g_init_bits));
clear_flg = false;
} else {
++n_bits;
if (n_bits == maxbits) maxcode = maxmaxcode;
else maxcode = MAXCODE(n_bits);
}
}
if (code == EOFCode) {
// At EOF, write the rest of the buffer.
while (cur_bits > 0) {
char_out(cur_accum & 0xff, outs);
cur_accum >>= 8;
cur_bits -= 8;
}
flush_char(outs);
}
};
LZWEncoder.apply(this, arguments);
return exports;
};
</script>
<script language="JavaScript">
function swapImage(t, e) {
var r = t.getAttribute("data-srcnm");
t.removeAttribute("srcset"),
r || t.setAttribute("data-srcnm", t.src),
(t.src = e);
}
function setOriginal(t) {
var e = "",
r = "";
(r = t.getAttribute("data-srcmd")),
(e = t.getAttribute("data-srcnm")),
r
? ((t.src = r), t.removeAttribute("data-srcmd"))
: ((t.src = e), t.removeAttribute("data-srcnm"));
}
function swapImageMD(t, e) {
t.setAttribute("data-srcmd", t.src), (t.src = e);
}
function jsready(t) {
/in/.test(document.readyState)
? setTimeout("jsready(" + t + ")", 9)
: t();
}
jsready(function () {
var t = window.devicePixelRatio ? window.devicePixelRatio : 1;
if (t > 1)
for (
var e = document.getElementsByTagName("img"), r = 0;
r < e.length;
r++
)
e[r].getAttribute("data-src2x") &&
(e[r].setAttribute(
"data-src-orig",
e[r].getAttribute("src")
),
e[r].setAttribute(
"src",
e[r].getAttribute("data-src2x")
));
});
</script>
<script language="JavaScript">
/**
* This class lets you encode animated GIF files
* Base class : http://www.java2s.com/Code/Java/2D-Graphics-GUI/AnimatedGifEncoder.htm
* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
* @author Thibault Imbert (AS3 version - bytearray.org)
* @author Kevin Kwok (JavaScript version - https://github.com/antimatter15/jsgif)
* @version 0.1 AS3 implementation
*/
GIFEncoder = function () {
for (var i = 0, chr = {}; i < 256; i++)
chr[i] = String.fromCharCode(i);
function ByteArray() {
this.bin = [];
}
ByteArray.prototype.getData = function () {
for (var v = "", l = this.bin.length, i = 0; i < l; i++)
v += chr[this.bin[i]];
return v;
};
ByteArray.prototype.writeByte = function (val) {
this.bin.push(val);
};
ByteArray.prototype.writeUTFBytes = function (string) {
for (var l = string.length, i = 0; i < l; i++)
this.writeByte(string.charCodeAt(i));
};
ByteArray.prototype.writeBytes = function (
array,
offset,
length
) {
for (
var l = length || array.length, i = offset || 0;
i < l;
i++
)
this.writeByte(array[i]);
};
var exports = {};
var width; // image size
var height;
var transparent = null; // transparent color if given
var transIndex; // transparent index in color table
var repeat = -1; // no repeat
var delay = 0; // frame delay (hundredths)
var started = false; // ready to output frames
var out;
var image; // current frame
var pixels; // BGR byte array from frame
var indexedPixels; // converted frame indexed to palette
var colorDepth; // number of bit planes
var colorTab; // RGB palette
var usedEntry = []; // active palette entries
var palSize = 7; // color table size (bits-1)
var dispose = -1; // disposal code (-1 = use default)
var closeStream = false; // close stream when finished
var firstFrame = true;
var sizeSet = false; // if false, get size from first frame
var sample = 10; // default sample interval for quantizer
var comment =
"Generated by jsgif (https://github.com/antimatter15/jsgif/)"; // default comment for generated gif
/**
* Sets the delay time between each frame, or changes it for subsequent frames
* (applies to last frame added)
* int delay time in milliseconds
* @param ms
*/
var setDelay = (exports.setDelay = function setDelay(ms) {
delay = Math.round(ms / 10);
});
/**
* Sets the GIF frame disposal code for the last added frame and any
*
* subsequent frames. Default is 0 if no transparent color has been set,
* otherwise 2.
* @param code
* int disposal code.
*/
var setDispose = (exports.setDispose = function setDispose(
code
) {
if (code >= 0) dispose = code;
});
/**
* Sets the number of times the set of GIF frames should be played. Default is
* 1; 0 means play indefinitely. Must be invoked before the first image is
* added.
*
* @param iter
* int number of iterations.
* @return
*/
var setRepeat = (exports.setRepeat = function setRepeat(iter) {
if (iter >= 0) repeat = iter;
});
/**
* Sets the transparent color for the last added frame and any subsequent
* frames. Since all colors are subject to modification in the quantization
* process, the color in the final palette for each frame closest to the given
* color becomes the transparent color for that frame. May be set to null to
* indicate no transparent color.
* @param
* Color to be treated as transparent on display.
*/
var setTransparent = (exports.setTransparent =
function setTransparent(c) {
transparent = c;
});
/**
* Sets the comment for the block comment
* @param
* string to be insterted as comment
*/
var setComment = (exports.setComment = function setComment(c) {
comment = c;
});
/**
* The addFrame method takes an incoming BitmapData object to create each frames
* @param
* BitmapData object to be treated as a GIF's frame
*/
var addFrame = (exports.addFrame = function addFrame(
im,
is_imageData
) {
if (im === null || !started || out === null) {
throw new Error(
"Please call start method before calling addFrame"
);
}
var ok = true;
try {
if (!is_imageData) {
image = im.getImageData(
0,
0,
im.canvas.width,
im.canvas.height
).data;
if (!sizeSet)
setSize(im.canvas.width, im.canvas.height);
} else {
image = im;
}
getImagePixels(); // convert to correct format if necessary
analyzePixels(); // build color table & map pixels
if (firstFrame) {
writeLSD(); // logical screen descriptior
writePalette(); // global color table
if (repeat >= 0) {
// use NS app extension to indicate reps
writeNetscapeExt();
}
}
writeGraphicCtrlExt(); // write graphic control extension
if (comment !== "") {
writeCommentExt(); // write comment extension
}
writeImageDesc(); // image descriptor
if (!firstFrame) writePalette(); // local color table
writePixels(); // encode and write pixel data
firstFrame = false;
} catch (e) {
ok = false;
}
return ok;
});
/**
* Adds final trailer to the GIF stream, if you don't call the finish method
* the GIF stream will not be valid.
*/
var finish = (exports.finish = function finish() {
if (!started) return false;
var ok = true;
started = false;
try {
out.writeByte(0x3b); // gif trailer
} catch (e) {
ok = false;
}
return ok;
});
/**
* Resets some members so that a new stream can be started.
* This method is actually called by the start method
*/
var reset = function reset() {
// reset for subsequent use
transIndex = 0;
image = null;
pixels = null;
indexedPixels = null;
colorTab = null;
closeStream = false;
firstFrame = true;
};
/**
* * Sets frame rate in frames per second. Equivalent to
* <code>setDelay(1000/fps)</code>.
* @param fps
* float frame rate (frames per second)
*/
var setFrameRate = (exports.setFrameRate =
function setFrameRate(fps) {
if (fps != 0xf) delay = Math.round(100 / fps);
});
/**
* Sets quality of color quantization (conversion of images to the maximum 256
* colors allowed by the GIF specification). Lower values (minimum = 1)
* produce better colors, but slow processing significantly. 10 is the
* default, and produces good color mapping at reasonable speeds. Values
* greater than 20 do not yield significant improvements in speed.
* @param quality
* int greater than 0.
* @return
*/
var setQuality = (exports.setQuality = function setQuality(
quality
) {
if (quality < 1) quality = 1;
sample = quality;
});
/**
* Sets the GIF frame size. The default size is the size of the first frame
* added if this method is not invoked.
* @param w
* int frame width.
* @param h
* int frame width.
*/
var setSize = (exports.setSize = function setSize(w, h) {
if (started && !firstFrame) return;
width = w;
height = h;
if (width < 1) width = 320;
if (height < 1) height = 240;
sizeSet = true;
});
/**
* Initiates GIF file creation on the given stream.
* @param os
* OutputStream on which GIF images are written.
* @return false if initial write failed.
*/
var start = (exports.start = function start() {
reset();
var ok = true;
closeStream = false;
out = new ByteArray();
try {
out.writeUTFBytes("GIF89a"); // header
} catch (e) {
ok = false;
}
return (started = ok);
});
var cont = (exports.cont = function cont() {
reset();
var ok = true;
closeStream = false;
out = new ByteArray();
return (started = ok);
});
/**
* Analyzes image colors and creates color map.
*/
var analyzePixels = function analyzePixels() {
var len = pixels.length;
var nPix = len / 3;
indexedPixels = [];
var nq = new NeuQuant(pixels, len, sample);
// initialize quantizer
colorTab = nq.process(); // create reduced palette
// map image pixels to new palette
var k = 0;
for (var j = 0; j < nPix; j++) {
var index = nq.map(
pixels[k++] & 0xff,
pixels[k++] & 0xff,
pixels[k++] & 0xff
);
usedEntry[index] = true;
indexedPixels[j] = index;
}
pixels = null;
colorDepth = 8;
palSize = 7;
// get closest match to transparent color if specified
if (transparent !== null) {
transIndex = findClosest(transparent);
}
};
/**
* Returns index of palette color closest to c
*/
var findClosest = function findClosest(c) {
if (colorTab === null) return -1;
var r = (c & 0xff0000) >> 16;
var g = (c & 0x00ff00) >> 8;
var b = c & 0x0000ff;
var minpos = 0;
var dmin = 256 * 256 * 256;
var len = colorTab.length;
for (var i = 0; i < len; ) {
var dr = r - (colorTab[i++] & 0xff);
var dg = g - (colorTab[i++] & 0xff);
var db = b - (colorTab[i] & 0xff);
var d = dr * dr + dg * dg + db * db;
var index = i / 3;
if (usedEntry[index] && d < dmin) {
dmin = d;
minpos = index;
}
i++;
}
return minpos;
};
/**
* Extracts image pixels into byte array "pixels
*/
var getImagePixels = function getImagePixels() {
var w = width;
var h = height;
pixels = [];
var data = image;
var count = 0;
for (var i = 0; i < h; i++) {
for (var j = 0; j < w; j++) {
var b = i * w * 4 + j * 4;
pixels[count++] = data[b];
pixels[count++] = data[b + 1];
pixels[count++] = data[b + 2];
}
}
};
/**
* Writes Graphic Control Extension
*/
var writeGraphicCtrlExt = function writeGraphicCtrlExt() {
out.writeByte(0x21); // extension introducer
out.writeByte(0xf9); // GCE label
out.writeByte(4); // data block size
var transp;
var disp;
if (transparent === null) {
transp = 0;
disp = 0; // dispose = no action
} else {
transp = 1;
disp = 2; // force clear if using transparent color
}
if (dispose >= 0) {
disp = dispose & 7; // user override
}
disp <<= 2;
// packed fields
out.writeByte(
0 | // 1:3 reserved
disp | // 4:6 disposal
0 | // 7 user input - 0 = none
transp
); // 8 transparency flag
WriteShort(delay); // delay x 1/100 sec
out.writeByte(transIndex); // transparent color index
out.writeByte(0); // block terminator
};
/**
* Writes Comment Extention
*/
var writeCommentExt = function writeCommentExt() {
out.writeByte(0x21); // extension introducer
out.writeByte(0xfe); // comment label
out.writeByte(comment.length); // Block Size (s)
out.writeUTFBytes(comment);
out.writeByte(0); // block terminator
};
/**
* Writes Image Descriptor
*/
var writeImageDesc = function writeImageDesc() {
out.writeByte(0x2c); // image separator
WriteShort(0); // image position x,y = 0,0
WriteShort(0);
WriteShort(width); // image size
WriteShort(height);
// packed fields
if (firstFrame) {
// no LCT - GCT is used for first (or only) frame
out.writeByte(0);
} else {
// specify normal LCT
out.writeByte(
0x80 | // 1 local color table 1=yes
0 | // 2 interlace - 0=no
0 | // 3 sorted - 0=no
0 | // 4-5 reserved
palSize
); // 6-8 size of color table
}
};
/**
* Writes Logical Screen Descriptor
*/
var writeLSD = function writeLSD() {
// logical screen size
WriteShort(width);
WriteShort(height);
// packed fields
out.writeByte(
0x80 | // 1 : global color table flag = 1 (gct used)
0x70 | // 2-4 : color resolution = 7
0x00 | // 5 : gct sort flag = 0
palSize
); // 6-8 : gct size
out.writeByte(0); // background color index
out.writeByte(0); // pixel aspect ratio - assume 1:1
};
/**
* Writes Netscape application extension to define repeat count.
*/
var writeNetscapeExt = function writeNetscapeExt() {
out.writeByte(0x21); // extension introducer
out.writeByte(0xff); // app extension label
out.writeByte(11); // block size
out.writeUTFBytes("NETSCAPE" + "2.0"); // app id + auth code
out.writeByte(3); // sub-block size
out.writeByte(1); // loop sub-block id
WriteShort(repeat); // loop count (extra iterations, 0=repeat forever)
out.writeByte(0); // block terminator
};
/**
* Writes color table
*/
var writePalette = function writePalette() {
out.writeBytes(colorTab);
var n = 3 * 256 - colorTab.length;
for (var i = 0; i < n; i++) out.writeByte(0);
};
var WriteShort = function WriteShort(pValue) {
out.writeByte(pValue & 0xff);
out.writeByte((pValue >> 8) & 0xff);
};
/**
* Encodes and writes pixel data
*/
var writePixels = function writePixels() {
var myencoder = new LZWEncoder(
width,
height,
indexedPixels,
colorDepth
);
myencoder.encode(out);
};
/**
* Retrieves the GIF stream
*/
var stream = (exports.stream = function stream() {
return out;
});
var setProperties = (exports.setProperties =
function setProperties(has_start, is_first) {
started = has_start;
firstFrame = is_first;
});
return exports;
};
</script>
<script language="JavaScript">
function encode64(input) {
var output = "",
i = 0,
l = input.length,
key =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=",
chr1,
chr2,
chr3,
enc1,
enc2,
enc3,
enc4;
while (i < l) {
chr1 = input.charCodeAt(i++);
chr2 = input.charCodeAt(i++);
chr3 = input.charCodeAt(i++);
enc1 = chr1 >> 2;
enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
enc4 = chr3 & 63;
if (isNaN(chr2)) enc3 = enc4 = 64;
else if (isNaN(chr3)) enc4 = 64;
output =
output +
key.charAt(enc1) +
key.charAt(enc2) +
key.charAt(enc3) +
key.charAt(enc4);
}
return output;
}
</script>
<script language="JavaScript">
function setup(body) {
body.ondragover = function () {
return false;
};
body.ondragend = function () {
return false;
};
body.ondrop = function (e) {
// Prevent the browser from showing the dropped file
e.preventDefault();
// Get the image data
var imageData = getImageData(e);
// If there is some data, add it to the page
if (imageData !== null) {
addDroppedElement(imageData);
}
};
}
function getImageData(event) {
var file = event.dataTransfer.files[0];
if (file.type.indexOf("image") === 0) {
return file;
}
}
function addDroppedElement(imageData) {
var reader = new FileReader();
reader.onload = function (event) {
event.preventDefault;
// Create image element
var droppedImage = new Image();
droppedImage.src = event.target.result;
// add delay so the image can be loaded properly before accessing it
setTimeout(function () {
var fileName = imageData.name.split(".")[0];
var origWidth = parseInt(
fileName.split("_")[1].split("x")[0]
);
var origHeight = parseInt(
fileName.split("_")[1].split("x")[1]
);
var imgNW = droppedImage.naturalWidth;
var imgNH = droppedImage.naturalHeight;
var zoom = 1;
switch (origHeight) {
case 8:
zoom = 4;
break;
case 16:
zoom = 2;
break;
case 24:
zoom = 4 / 3;
break;
case 32:
zoom = 1;
break;
}
// Create canvas for tiles
var droppedImageCanvas =
document.createElement("canvas");
droppedImageCanvas.width = origWidth * zoom;
droppedImageCanvas.height = origHeight * zoom;
droppedImageCanvas.style.display = "none";
// Create invisible canvas for original image
var invisImageCanvas = document.createElement("canvas");
invisImageCanvas.width = imgNW;
invisImageCanvas.height = imgNH;
invisImageCanvas.style.display = "none";
// Create code container
var txtS = document.createElement("p");
txtS.innerHTML = "Sprite";
txtS.className = "txtHead";
var droppedImageCode =
document.createElement("textarea");
droppedImageCode.className = "code";
droppedImageCode.rows = "7";
var txtM = document.createElement("p");
txtM.innerHTML = "Mask";
txtM.className = "txtHead";
var droppedMaskCode =
document.createElement("textarea");
droppedMaskCode.className = "code";
droppedMaskCode.rows = "7";
var txtSM = document.createElement("p");
txtSM.innerHTML = "Sprite + Mask";
txtSM.className = "txtHead";
var droppedComboCode =
document.createElement("textarea");
droppedComboCode.className = "code";
droppedComboCode.rows = "7";
// Create div container
var droppedImageDiv = document.createElement("div");
droppedImageDiv.className = "image-view";
droppedImageDiv.appendChild(droppedImageCanvas);
droppedImageDiv.appendChild(invisImageCanvas);
var imageContainer =
document.getElementById("image-container");
imageContainer.innerHTML = "";
imageContainer.appendChild(droppedImageDiv);
imageContainer.appendChild(txtS);
imageContainer.appendChild(droppedImageCode);
imageContainer.appendChild(
document.createElement("br")
);
imageContainer.appendChild(txtM);
imageContainer.appendChild(droppedMaskCode);
imageContainer.appendChild(
document.createElement("br")
);
imageContainer.appendChild(txtSM);
imageContainer.appendChild(droppedComboCode);
// Create context for drawing
var droppedImageContext =
droppedImageCanvas.getContext("2d");
droppedImageContext.imageSmoothingEnabled = false;
var invisImageContext =
invisImageCanvas.getContext("2d");
// Draw the image on an invisible canvas to generate the code
invisImageContext.drawImage(droppedImage, 0, 0);
// Initiate GIFEncoder
var encoder = new GIFEncoder();
encoder.setRepeat(0);
encoder.setDelay(500);
encoder.start();
droppedImageContext.fillStyle = "#00FF00";
// Clip the image, draw on invisble canvas with green background and create a frame from the canvas
for (var i = 0; i < imgNH / origHeight; i++) {
droppedImageContext.fillRect(
0,
0,
droppedImageCanvas.width,
droppedImageCanvas.height
);
droppedImageContext.drawImage(
droppedImage,
0,
i * origHeight,
origWidth,
origHeight,
0,
0,
origWidth * zoom,
origHeight * zoom
);
encoder.addFrame(droppedImageContext);
}
// Finish the GIF creation and show it with the total number of frames
encoder.finish();
var binaryGIF = encoder.stream().getData();
var dataURL =
"data:image/gif;base64," + encode64(binaryGIF);
var gifDiv = document.createElement("div");
var gif = document.createElement("img");
gif.style.verticalAlign = "middle";
gif.src = dataURL;
gifDiv.appendChild(gif);
var totalFrames = document.createElement("p");
totalFrames.style.display = "inline-block";
totalFrames.style.margin = "0px 20px";
totalFrames.innerHTML =
"Total number of frames: " + imgNH / origHeight;
gifDiv.appendChild(totalFrames);
imageContainer.insertBefore(
gifDiv,
imageContainer.firstChild
);
// Generate the sprite string
var spriteString =
"static " +
fileName.split("_")[0] +
": [u8;_] = " +
"[\n" +
origWidth +
", " +
origHeight +
", // width, height,\n" +
"// FRAME 00\n";
var maskString =
"static " +
fileName.split("_")[0] +
"_mask: [u8;_] = " +
"[\n" +
origWidth +
", " +
origHeight +
", // width, height,\n" +
"// FRAME 00\n";
var comboString =
"static " +
fileName.split("_")[0] +
"_plus_mask: [u8;_] = " +
"[\n" +
origWidth +
", " +
origHeight +
", // width, height,\n" +
"// FRAME 00\n";
var pageCount = Math.ceil(imgNH / 8);
var columnCount = imgNW;
var currentByte = 0;
var frameCounter = 0;
var bytesPerFrame = (origWidth * origHeight) / 8;
// Read the sprite page-by-page
for (var page = 0; page < pageCount; page++) {
// Read the page column-by-column
for (
var column = 0;
column < columnCount;
column++
) {
// Read the column into a byte
var spriteByte = 0;
var maskByte = 0;
for (var yPixel = 0; yPixel < 8; yPixel++) {
// If the color of the pixel is not black, count it as white
var pixelColor =
invisImageContext.getImageData(
column,
page * 8 + yPixel,
1,
1
).data;
if (
pixelColor[0] > 0 ||
pixelColor[1] > 0 ||
pixelColor[2] > 0
) {
spriteByte |= 1 << yPixel;
}
if (pixelColor[3] > 0) {
maskByte |= 1 << yPixel;
}
}
// Print the column in hex notation, add a comma for formatting
var digitSpriteStr = spriteByte.toString(16);
var digitMaskStr = maskByte.toString(16);
if (digitSpriteStr.length == 1) {
digitSpriteStr = "0" + digitSpriteStr;
}
if (digitMaskStr.length == 1) {
digitMaskStr = "0" + digitMaskStr;
}
spriteString += "0x" + digitSpriteStr + ", ";
maskString += "0x" + digitMaskStr + ", ";
comboString += "0x" + digitSpriteStr + ", ";
if (imgNW % 2 === 0) {
comboString += "0x" + digitMaskStr + ", ";
if (currentByte % imgNW == imgNW - 1) {
spriteString += "\n";
maskString += "\n";
comboString += "\n";
}
}
if (
currentByte % imgNW ==
Math.ceil(imgNW / 2) - 1
) {
comboString += "\n";
}
if (imgNW % 2 === 1) {
comboString += "0x" + digitMaskStr + ", ";
if (currentByte % imgNW == imgNW - 1) {
spriteString += "\n";
maskString += "\n";
comboString += "\n";
}
}
if (
currentByte % bytesPerFrame ===
bytesPerFrame - 1 &&
frameCounter < imgNH / origHeight - 1
) {
if (currentByte % imgNW !== imgNW - 1) {
spriteString += "\n";
maskString += "\n";
}
if (
currentByte % imgNW !==
Math.ceil(imgNW / 2) - 1
) {
comboString += "\n";
}
frameCounter++;
var frameNumber =
frameCounter.toString().length === 1
? "0" + frameCounter.toString()
: frameCounter.toString();
spriteString +=
"// FRAME " + frameNumber + "\n";
maskString +=
"// FRAME " + frameNumber + "\n";
comboString +=
"// FRAME " + frameNumber + "\n";
currentByte = 0;
} else {
currentByte++;
}
}
}
spriteString = spriteString.replace(/\s*$/, "\n];");
maskString = maskString.replace(/\s*$/, "\n];");
comboString = comboString.replace(/\s*$/, "\n];");
// Put the code in the text field
droppedImageCode.innerHTML = spriteString;
droppedMaskCode.innerHTML = maskString;
droppedComboCode.innerHTML = comboString;
}, 50);
};
reader.readAsDataURL(imageData);
}
</script>
</body>
</html>