Struct atomic_polyfill::AtomicU8
1.34.0 · #[repr(C, align(1))]pub struct AtomicU8 { /* private fields */ }
Expand description
An integer type which can be safely shared between threads.
This type has the same in-memory representation as the underlying
integer type, [u8
]. For more about the differences between atomic types and
non-atomic types as well as information about the portability of
this type, please see the module-level documentation.
Note: This type is only available on platforms that support
atomic loads and stores of [u8
].
Implementations§
§impl AtomicU8
impl AtomicU8
const: 1.34.0pub const fn new(v: u8) -> AtomicU8
pub const fn new(v: u8) -> AtomicU8
Creates a new atomic integer.
Examples
use std::sync::atomic::AtomicU8;
let atomic_forty_two = AtomicU8::new(42);
const: unstablepub unsafe fn from_ptr<'a>(ptr: *mut u8) -> &'a AtomicU8
🔬This is a nightly-only experimental API. (atomic_from_ptr
)
pub unsafe fn from_ptr<'a>(ptr: *mut u8) -> &'a AtomicU8
atomic_from_ptr
)Creates a new reference to an atomic integer from a pointer.
Examples
#![feature(atomic_from_ptr, pointer_is_aligned)]
use std::sync::atomic::{self, AtomicU8};
use std::mem::align_of;
// Get a pointer to an allocated value
let ptr: *mut u8 = Box::into_raw(Box::new(0));
assert!(ptr.is_aligned_to(align_of::<AtomicU8>()));
{
// Create an atomic view of the allocated value
let atomic = unsafe {AtomicU8::from_ptr(ptr) };
// Use `atomic` for atomic operations, possibly share it with other threads
atomic.store(1, atomic::Ordering::Relaxed);
}
// It's ok to non-atomically access the value behind `ptr`,
// since the reference to the atomic ended its lifetime in the block above
assert_eq!(unsafe { *ptr }, 1);
// Deallocate the value
unsafe { drop(Box::from_raw(ptr)) }
Safety
ptr
must be aligned toalign_of::<AtomicBool>()
(note that on some platforms this can be bigger thanalign_of::<bool>()
).ptr
must be aligned toalign_of::<AtomicU8>()
(note that on some platforms this can be bigger thanalign_of::<u8>()
).ptr
must be valid for both reads and writes for the whole lifetime'a
.- The value behind
ptr
must not be accessed through non-atomic operations for the whole lifetime'a
.
pub fn get_mut(&mut self) -> &mut u8
pub fn get_mut(&mut self) -> &mut u8
Returns a mutable reference to the underlying integer.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
Examples
use std::sync::atomic::{AtomicU8, Ordering};
let mut some_var = AtomicU8::new(10);
assert_eq!(*some_var.get_mut(), 10);
*some_var.get_mut() = 5;
assert_eq!(some_var.load(Ordering::SeqCst), 5);
pub fn from_mut(v: &mut u8) -> &mut AtomicU8
🔬This is a nightly-only experimental API. (atomic_from_mut
)
pub fn from_mut(v: &mut u8) -> &mut AtomicU8
atomic_from_mut
)Get atomic access to a &mut u8
.
Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicU8, Ordering};
let mut some_int = 123;
let a = AtomicU8::from_mut(&mut some_int);
a.store(100, Ordering::Relaxed);
assert_eq!(some_int, 100);
pub fn get_mut_slice(this: &mut [AtomicU8]) -> &mut [u8]
🔬This is a nightly-only experimental API. (atomic_from_mut
)
pub fn get_mut_slice(this: &mut [AtomicU8]) -> &mut [u8]
atomic_from_mut
)Get non-atomic access to a &mut [AtomicU8]
slice
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
Examples
#![feature(atomic_from_mut, inline_const)]
use std::sync::atomic::{AtomicU8, Ordering};
let mut some_ints = [const { AtomicU8::new(0) }; 10];
let view: &mut [u8] = AtomicU8::get_mut_slice(&mut some_ints);
assert_eq!(view, [0; 10]);
view
.iter_mut()
.enumerate()
.for_each(|(idx, int)| *int = idx as _);
std::thread::scope(|s| {
some_ints
.iter()
.enumerate()
.for_each(|(idx, int)| {
s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
})
});
pub fn from_mut_slice(v: &mut [u8]) -> &mut [AtomicU8]
🔬This is a nightly-only experimental API. (atomic_from_mut
)
pub fn from_mut_slice(v: &mut [u8]) -> &mut [AtomicU8]
atomic_from_mut
)Get atomic access to a &mut [u8]
slice.
Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicU8, Ordering};
let mut some_ints = [0; 10];
let a = &*AtomicU8::from_mut_slice(&mut some_ints);
std::thread::scope(|s| {
for i in 0..a.len() {
s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
}
});
for (i, n) in some_ints.into_iter().enumerate() {
assert_eq!(i, n as usize);
}
const: unstablepub fn into_inner(self) -> u8
pub fn into_inner(self) -> u8
Consumes the atomic and returns the contained value.
This is safe because passing self
by value guarantees that no other threads are
concurrently accessing the atomic data.
Examples
use std::sync::atomic::AtomicU8;
let some_var = AtomicU8::new(5);
assert_eq!(some_var.into_inner(), 5);
pub fn load(&self, order: Ordering) -> u8
pub fn load(&self, order: Ordering) -> u8
Loads a value from the atomic integer.
load
takes an Ordering
argument which describes the memory ordering of this operation.
Possible values are SeqCst
, Acquire
and Relaxed
.
Panics
Panics if order
is Release
or AcqRel
.
Examples
use std::sync::atomic::{AtomicU8, Ordering};
let some_var = AtomicU8::new(5);
assert_eq!(some_var.load(Ordering::Relaxed), 5);
pub fn store(&self, val: u8, order: Ordering)
pub fn store(&self, val: u8, order: Ordering)
Stores a value into the atomic integer.
store
takes an Ordering
argument which describes the memory ordering of this operation.
Possible values are SeqCst
, Release
and Relaxed
.
Panics
Panics if order
is Acquire
or AcqRel
.
Examples
use std::sync::atomic::{AtomicU8, Ordering};
let some_var = AtomicU8::new(5);
some_var.store(10, Ordering::Relaxed);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.70.0 (const: 1.70.0)pub const fn as_ptr(&self) -> *mut u8
pub const fn as_ptr(&self) -> *mut u8
Returns a mutable pointer to the underlying integer.
Doing non-atomic reads and writes on the resulting integer can be a data race.
This method is mostly useful for FFI, where the function signature may use
*mut u8
instead of &AtomicU8
.
Returning an *mut
pointer from a shared reference to this atomic is safe because the
atomic types work with interior mutability. All modifications of an atomic change the value
through a shared reference, and can do so safely as long as they use atomic operations. Any
use of the returned raw pointer requires an unsafe
block and still has to uphold the same
restriction: operations on it must be atomic.
Examples
use std::sync::atomic::AtomicU8;
extern "C" {
fn my_atomic_op(arg: *mut u8);
}
let atomic = AtomicU8::new(1);
// SAFETY: Safe as long as `my_atomic_op` is atomic.
unsafe {
my_atomic_op(atomic.as_ptr());
}